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Abstract: We show that the probability distribution of the Greenberger-Horne-Zeilinger quantum state (GHZ) under local action of
independent von Neumann measurements follows a convex distribution of two distributions. The coefficients of the combination are
related to the equatorial parts of the measurements, and the distributions associated with those coefficients are associated with the real
parts of the measurements. One possible application of the result is that it allows one to split into two pieces the simulation of the GHZ
state. Simulating, in worst-case or in average case, a quantum state like the GHZ state with random resources, shared or private, as
well as with classical communication resources or even odd resources like nonlocal boxes is a very important in the theory of quantum
communication complexity.
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1. Introduction

The starting point of the result was motivated by the simu-
lation of the Greenberger-Horne-Zeilinger (GHZ, [1], [2],
[3], [4], [5]) quantum state. We can think of this simula-
tion problem as a problem in which many people get the
description of a von Neumann measurement. Each party
does not know the description of any other measurements
belonging to the other parties. Each party after having ap-
plied his measurement on the subsystem of the state that he
shares with the others gets a classical outcome. The joint
distribution of the outcomes of every parties follows the
distribution studied in this thesis in the case of the GHZ
state. The result indicates that in order to simulate the dis-
tribution, we can first simulate the equatorial parts of the
measurements in order to know which distribution asso-
ciated to the real parts of the measurements to simulate.
Simulating GHZ means simulating the probability distri-
bution of the quantum state, and, more specifically, simu-
lating with shared or private random resources as well as
classical communication resources (a classical channel).
What does it mean? Intuitively, suppose that an entangled
quantum state is shared amongn persons. A state is en-
tangled if it cannot be factored partially or completely into
tensor products. For instance, we are interested in the state

|Ψ〉 = 1√
2
|0n〉 + 1√

2
|1n〉 called the GHZ state in honor

of Greenberger, Horne et Zeilinger, [6]. Each person owns
the description of a von Neumann measurement that he
can apply to his part of GHZ. Call thesen measurements
Mj for j ∈ {1, . . . , n}. It is important in what follows that
theith person does not knowMj for i 6= j. n persons ap-
plying jointly and independently their measurements mean
they apply⊗n

j=1Mj to |Ψ〉. By applying these measure-
ments, they get random outputs|bj〉. The1st gets|b1〉, the
2nd gets|b2〉, etc. Quantum mechanics asserts these ran-
dom results are eigenvalues of theMj . The joint distribu-
tion of the these results is what we are trying to simulate
classically. Each local von Neumann measurement is rep-
resented by a point on the 3-dimensional sphere (called
sometimes the Bloch sphere). A point on the sphere is rep-
resented by(θ, φ) ∈ [0, 2π) × [0, π). The result says that
the probability distribution is a convex combination of two
distributions. The coefficients of the convex combination
are related to theθj reprensenting the equatorial parts of
theMj and the two distributions are related to theφj rep-
resenting the real parts ofMj .
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For analyzing the structure of the probability distribution that we shall denote from now byP, we will proceed slightly
differently, but in an equivalent way, by supposing that then persons transform|Ψ〉 by applying a unitary transormation
Uj independently from each other. By doing this, the basis reprensenting the eigenvectors is then transformed into the
canonical basis used in quantum computing. The eigenvectors are then|aj〉 with aj ∈ {0, 1}. Hence, then persons
measure in the standard basis of computation once they have appliedU = ⊗n

j=1Uj to the state|Ψ〉. The distribution
obtained isP(a) with a = a1 · · · an ∈ {0, 1}n. More precisely, the result is about the structure ofP(a) = |〈a|U |Ψ〉|2.

Being able of simulating classicallyP was the subject of many articles. In fact, when saying ”simulating GHZ” or
”simulating entanglement”, it means simulating classicallyP. How ? With shared random variables and classical com-
munication. For the concepts related to communication complexity like the definitions of worst-case or average case
complexity and shared random variables, [7]. The result itself is about the structure ofP and not about communication
complexity. Originally, there were A. Einstein, B. Podolsky and N. Rosen (EPR trio, [8]) in 1935 who believed they
showed that quantum mechanics (of Copenhagen) is not complete because it is impossible to reproduce quantum correla-
tions with hidden variables (shared random variables) obtained from|Ψ〉 whenn = 2. These correlations are the moments
of the distribution ofP. In [9], it was shown that it is impossible to reproduce these correlations with only shared ran-
dom variables. Maudlin [10] proposed to add classical communication resource (classical channel) to reproduce those
correlations. Maudlin made that suggestion without having the knowledge of the theory of complexity used by computer
scientists. From that moment, the theory of communication complexity became important in order to try reproducingP.
A sequence of papers were then published on the simulation ofP with n = 2 andn = 3 with average and worst case
complexity with different types of measurements, [11–15].

From the point of view of simulating the distributionP, the result gives a road to follow. In fact, it says that the
distributionP is a convex combination of two distributions denoted byP1 andP2. In order to simulateP, firstly one
has to to simulate a random bit allowing to decide which ofP1 or P2 to simulate. This bit is related to the coefficients
of the convex combination multiplyingP1 andP2. The combination being convex, the sum equals 1 and it defines a
Bernoulli distribution, biased in general. Secondly, one has to simulateP1 or P2 which are discrete distributions over the
set{0, 1}n. The simulation of the Bernoulli distribution is related to the phases of the complex numbers defining the local
unitary transformationsUj of then persons. In an equivalent way, simulating the Bernoulli distritution is only related to
the equatorial parts of the local von NeumannMj if we adopt that way of working. For the simulation ofP1 or of P2,
it is related to the amplitudes of the complex numbers defining the local unitary transformationsUj of then persons. In
an equivalent way, simulatingP1 or P2 is related to the real parts of the local von Neumann measurementsMj . The
cost of simulation (worst-case or average) is then reduced to the sum of the costs for simulating the Bernoulli distribution
reprensented by the coefficients of the convex combination and the two distributionsP1 or P2. Section (2) of this article
contains the main result about the structure ofP. Section (3) is about the equivalent correspondence between the two
ways of working and a small discussion about the simulation ofP.

2. Structure of the probability distribution

In what follows,n ∈ N, j = 1, . . . , n, aj ∈ {0, 1} andUj ∈ U(2), whereU(2) is the group of unitary2× 2 matrice. The
main result concerns the structure of the probability distributionP over the set{0, 1}n where

P(a) = |〈a|U |Ψ〉|2

〈a| =
n⊗

j=1

〈aj |

U =
n⊗

j=1

Uj

|Ψ〉 = 1√
2
|0n〉+ 1√

2
|1n〉.

We remind the reader of the following lemma before proving our theorem.

Lemma 1.For all U ∈ U(2), there existϕ ∈ [0, 2π), ψ ∈ [0, 2π), ω ∈ [0, 2π) andτ ∈ {0, 1} such that

U =
(

eıϕ cosω −ıτe−ıψ sin ω
ıτeıψ sin ω (−1)τe−ıϕ cosω

)
.

The next remark gives some interesting cases of the preceding lemma. Only the first three cases will be useful in
proving the main result.

Remark. 1.If τ = 0 in the preceding lemma (1), thenU ∈ SU(2).
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2.If τ = 0, ϕ = 0 andψ = 0 in the preceding lemma (1), thenU is a rotation.
3.If τ = 1 andϕ = 0 in the preceding lemma (1), thenU is also hermitian that isU = U†. In that case,U is an element

of order 2.
4.The Pauli matrixσ1 corresponds toω = π

2 , ϕ = 0, ψ = −π
2 andτ = 1.

5.The Pauli matrixσ2 corresponds toω = π
2 , ϕ = 0, ψ = 0 andτ = 1.

6.The Pauli matrixσ3 corresponds toω = 0, ϕ = 0, ψ = 0 andτ = 1.
7.The Hadamard matrix corresponds toω = π

4 , ϕ = 0, ψ = −π
2 andτ = 1.

One more thing before stating the main result, for allj = 1, . . . , n, defineαj andβj as

αj = eıϕj cosωj

βj = eıψj sin ωj .

Therefore everyUj ∈ U(2) can be represented as

Uj =
(

αj −ıτj β̄j

ıτj βj (−1)τj ᾱj

)
.

The next theorem is the main result of this paper.

Theorem 1.Let n ∈ N players (persons) sharing the state|Ψ〉 = 1√
2
|0n〉 + 1√

2
|1n〉. Every player receives a fix unitary

transformationUj for j = 1, . . . , n. Every player applies locally on his part his unitary transformation and then measures
in the standard basis. The results (outputs) are random bitsaj ∈ {0, 1} for j = 1, . . . , n. LetUj be given as in the lemma
( 1), a = a1 · · · an ∈ {0, 1}n, γ =

∑n
j=1 (ϕj + ψj) ∈ R/2πZ, andκ = π

2

∑n
j=1 τj ∈ R/2πZ. The joint distributionP,

defined byP(a) = |〈a|U |Ψ〉|2 with U = ⊗n
j=1|Uj〉 is a convex combination of two distributions as follow

P(a) = cos2
(

γ−κ
2

)
P1(a) + sin2

(
γ−κ

2

)
P2(a),

with

P1(a) =
1
2
(
f1(a) + f2(a)

)2
,

P2(a) =
1
2
(
f1(a)− f2(a)

)2
,

f1(a) =
n∏

j=1

cos
(
ωj − π

2 aj

)
and

f2(a) =
n∏

j=1

− sin
(
ωj − π

2 aj

)
.

Proof.Let the functionsxj : {0, 1} → {ϕj , ψj} for all j = 1, . . . , n be defined as

xj(aj) =
{

ϕj if aj = 0
ψj if aj = 1

Moreover, defined the functionss : {0, 1}n → R/2πZ, t : {0, 1}n → R/2πZ and the constantsγ ∈ R/2πZ, κ ∈ R/2πZ
respectively by

s(a) =
n∑

j=1

xj(aj),

t(a) =
π

2

n∑

j=1

τjaj ,

γ =
n∑

j=1

(
ϕj + ψj

)
,

κ =
π

2

n∑

j=1

τj .
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Since

P(a) = |〈a|U |Ψ〉|2 (1)

=
∣∣∣∣ 1√

2

n∏

j=1

〈aj |Uj |0〉+ 1√
2

n∏

j=1

〈aj |Uj |1〉
∣∣∣∣
2

, (2)

we then have by the definitions of the functionsxj that the complex arguments (phases) of the terms of the products of
the line (2) can be written as

arg 〈aj |Uj |0〉 = xj(aj) + τjaj
π

2
arg 〈aj |Uj |1〉 = −xj(aj ⊕ 1) + τjaj

π

2
+ τj

π

2
. (3)

Now, the products of the line (2) are written as

n∏

j=1

〈aj |Uj |0〉 = f1(a)exp
(

ı

n∑

j=1

arg 〈aj |Uj |0〉
)

(4)

n∏

j=1

〈aj |Uj |1〉 = f2(a)exp
(

ı

n∑

j=1

arg 〈aj |Uj |1〉
)

. (5)

Moreover, by definitions of the functions and the constantγ, we have that

n∑

j=1

xj(aj) =
(
s(a)− γ

2

)
+

γ

2
(6)

−
n∑

j=1

xj(aj ⊕ 1) = s(a)− γ

=
(
s(a)− γ

2

)
− γ

2
. (7)

Thanks to (6) and to (7), we have that

〈a|U |Ψ〉 = eı
(
t(a)+s(a)− γ−κ

2

)((
f1(a) + f2(a)√

2

)
cos

(γ − κ

2

)
+ ı

(
f1(a)− f2(a)√

2

)
sin

(γ − κ

2

))
. (8)

Therefore, the distributionP over the set{0, 1}n is written as follow

P(a) = cos2
(γ − κ

2

)
P1(a) + sin2

(γ − κ

2

)
P2(a). (9)

The only thing that remains to be shown is thatP1 andP2 are probability distributions. It is clear thatP1 andP2 are
positive for alla ∈ {0, 1}n. Hence, it remains to show that

∑
P1(a) = 1. (The proof forP2 is similar.) To show it, we

use the facts thatf21 andf22 are distributions so that(1/2)(f21 + f22 ) is a distribution as well so that

1
2

∑

a∈{0,1}n

(
f21 (a) + f22 (a)

)
= 1.

Moreover, we use the fact that ∑

a∈{0,1}n

(−1)a1+...+an = 0.

Hence,
∑

a∈{0,1}n

P1(a) = 1.

¥
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Remark.In addition to the lemma for representing a unitary transformation of size2 × 2 by a quadruple, it is worth

mentioning that we split the phase of the expression〈a|U |Ψ〉 into two parts, the non-interesting part i.e.eı
(
t(a)+s(a)− γ−κ

2

)

and the rest. Shor uses the same technic in analyzing his famous algorithm.

Remark.There is a computational advantage in space of using the formula we found forP instead of using directly the
one given by the axioms of quantum mechanics. In fact, in the formula we found, there is no tensor product and therefore
we can computeP(a1, . . . , an) for largen given then unitary transformations (or von Neumann measurements). When
there are for instance 10 persons each having a2× 2 unitary matrix, then the tensor product of those unitary matrice is a
unitary matrix of size1024× 1024.

Theorem (1) shows that the distributionP over{0, 1}n is a linear convex combination of the distributionsP1 andP2

that are caracterized by the products of the modules (amplitudes)f1 andf2. The next corollary establishes a link between
the parameters of the unitary transformations andP.

We remind of the definition of alocal probability distribution (in the physical sense). We will use that definition only
to assert that certain distributions have that property.

Definition 1(local distribution). Let Λ be a random variable withk possibles realizationsλi with non-zero probability
for i = 1, . . . , k. Given fixed unitary transformationsUj with j = 1, . . . , n, a distributionQ : {0, 1}n → [0, 1] is local
with respect toΛ andUj if, for all a1a2 · · · an ∈ {0, 1}n, the following factorisation holds

Q{Uj}n
j=1

(a1, . . . , an) =
k∑

i=1

n∏

j=1

QUj ,λi(aj)Prob(Λ = λi).

Remark.Without entering into the details, simulating classically a local distribution does not cost anything from the point
of view of communication complexity.

Corollary 1(Interesting statistical events, choice of interesting parameters, and probabilistic interpretations).For
all j = 1, . . . , n, let the quadruples(ωj , ψj , ϕj , τj) defining the specific following unitary transformationsVj .

1.f21 is the local probability distribution obtained when⊗n
j=1Vj is applied to the state|0n〉 and (ωj , ψj , ϕj , τj) =

(ωj , 0, 0, 0) for all j = 1, . . . , n.
2.f22 is the local probability distribution obtained when⊗n

j=1Vj is applied to the state|1n〉 and (ωj , ψj , ϕj , τj) =
(ωj , 0, 0, 0) for all j = 1, . . . , n.

3.P1 is the local probability distribution obtained when⊗n
j=1Vj is applied to the state|Ψ〉 and (ωj , ψj , ϕj , τj) =

(ωj , 0, 0, 0) for all j = 1, . . . , n.
4.P2 is the local probability distribution obtained when⊗n

j=1Vj is applied to the state|Ψ〉 and (ωj , ψj , ϕj , τj) =
(ωj , 0, 0, 0) for all j = 1, . . . , n− 2, (ωj , ψj , ϕj , τj) = (ωj , 0, 0, 1) for j = n− 1, n. (Only two of the parametersτj

must be equal to 1. We could have taken any other indices instead ofn− 1 andn.)
5.P2 can also be obtained when⊗n

j=1Vj is applied to|Ψ〉 and(ωj , ψj , ϕj , τj)
= (ωj , 0, 0, 0) for all j = 1, . . . , n − 1, (ωj , ψj , ϕj , τj) = (ωj , 0,−π

2 , 1) for j = n. It is equivalent to applyσ3

followed by a rotation over thenth subsystem.
6.12 (f21 + f22 ) = 1

2 (P1 + P2) is the probability distribution obtained by applying⊗n
j=1Vj to |Ψ〉 and(ωj , ψj , ϕj , τj) =

(ωj , 0, 0, 0) for all j = 1, . . . , n−1 and(ωn, ψn, ϕn, τn) = (ωn, 0, 0, 1). It is interesting to notice that this distribution
is local.

7.The Bernoulli distribution with parameterscos2
(
(γ − κ)/2

)
or sin2

(
(γ − κ)/2

)
corresponds to the distribution of

the sum(a1 + . . . + an) mod 2 (parity) obtained by applying⊗n
j=1Vj to |Ψ〉 when the anglesωj are restricted to

{π/4, 3π/4, 5π/4, 7π/4} which means that

Vj =
(

eıϕj cosωj −ıτj e−ıψj sin ωj

ıτj eıψj sin ωj ı2τj e−ıϕj cosωj

)
andωj ∈ {π/4, 3π/4, 5π/4, 7π/4}.

Proof.The proofs of (1), (2), (3), (4), (5), (6) are immediate. To show (7), notice that ifωj ∈ {π/4, 3π/4, 5π/4, 7π/4}
then

P(a1, . . . , an) =
1
2n

+
(−1)n+

∑n
j=1 aj

2n

(
n∏

j=1

sin(2ωj)

)
cos(γ − κ).
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Moreover, for allj = 1, . . . , n

sin(2ωj) ∈ {−1, +1} =⇒
n∏

j=1

sin(2ωj) ∈ {−1,+1}.

Since exactly half the elements of{0, 1}n have an even parity and the other half have an odd parity, then we have

Prob
( n∑

j=1

aj = b
)

= 2n−1

(
1
2n

+
(−1)n+b

2n

(
n∏

j=1

sin(2ωj)

)
cos(γ − κ)

)

=
1
2

+
(−1)n+b

2

(
n∏

j=1

sin(2ωj)

)
cos(γ − κ).

Therefore,

Prob
( n∑

j=1

aj = b
)

=





cos2
(

γ−κ
2

)
if





n + b is even and
∏n

j=1 sin(2ωj) = 1
or

n + b is odd and
∏n

j=1 sin(2ωj) = −1

sin2
(

γ−κ
2

)
if





n + b is odd and
∏n

j=1 sin(2ωj) = 1
or

n + b is even and
∏n

j=1 sin(2ωj) = −1

¥

Remark.The termscos2
(

γ−κ
2

)
andsin2

(
γ−κ

2

)
are the coefficients of the convex combination of the distributionP and

it explains why (7) is important. In the next section, we will briefly talk about the simulation ofP, and to know how

simulatingProb
( ∑n

j=1 aj = b
)

will be important for branching i.e. in order to know which ofP1 or P2 to simulate.

2.1. Marginal and conditional distribution for thenth bit

In this section,n ≥ 2. Firstly, we will find the marginal distributionP(ai1 , . . . , aim) whenij ∈ I, I ∈ P({1, . . . , n}),
card(I) = m, j ∈ {1, . . . ,m}, I 6= ∅, andI 6= {1, . . . , n}. Secondly, we will find the conditional distributionnth bit
givena1, . . . , an−1.

Theorem 2.Letn ≥ 2, I ∈ P({1, . . . , n}), card(I) = m, I = {i1, . . . , im}, I 6= ∅, andI 6= {1, . . . , n}, we have that

P(ai1 , . . . , aim) =
1
2

(
m∏

j=1

cos2
(
ωij −

π

2
aij

)
+

m∏

j=1

sin2
(
ωij −

π

2
aij

))
.

Proof.It is only necessary to look at the caseI = {1, 2, . . . , n − 1} i.e. whencard(I) = n − 1 andn /∈ I because, by
symmetry, we easily deduce other cases. We notice first that

P(a1, . . . , an) = cos2
(γ − κ

2

)
P1(a) + sin2

(γ − κ

2

)
P2(a)

Hence using the definition the marginal distribution,

P(a1, . . . , an−1) = P(a1, . . . , an−1, 0) + P(a1, . . . , an−1, 1)

=
1
2

(
n−1∏

j=1

cos2
(
ωj − π

2
aj

)
+

n−1∏

j=1

sin2
(
ωj − π

2
aj

))
.

By symmetry, we have the desired result.

¥
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Remark.For all I ∈ P({1, . . . , n}) such thatI 6= ∅ andI 6= {1, . . . , n}, the marginal distribution associated to the set of
indicesI is local.

Now, we look more closely to the conditional distributionP(an|a1, . . . , an−1), which is possible since we know the
marginal distributionP(a1, . . . , an−1).

Theorem 3.Let

u =
n−1∏

j=1

cos(ωj − π

2
aj)

v =
n−1∏

j=1

− sin(ωj − π

2
aj)

t = arctan
( v

u

)
.

Being given the first(n− 1) bitsa1, . . . , an−1, the conditional distribution of thenth bit is given by

P(an|a1, . . . , an−1) = cos2
(
ωn − π

2
an − t

)
cos2

(γ − κ

2

)
+ cos2

(
ωn − π

2
an + t

)
sin2

(γ − κ

2

)
.

Proof.By definition,

P(an|a1, . . . , an−1) =
P(a1, . . . , an)

P(a1, . . . , an−1)
.

Hence, fixing the first(n− 1) bitsa1, . . . , an−1, letting

u =
n−1∏

j=1

cos(ωj − π

2
aj)

v =
n−1∏

j=1

− sin(ωj − π

2
aj)

t = arctan
( v

u

)

and using the fact that for allp, q ∈ R andx ∈ [0, 2π),

p cos(x) + q sin(x) =
√

p2 + q2 cos(x + h)

h = arctan
(q

p

)
+

{
0 if p ≤ 0
π if p > 0

we therefore have that

P(an|a1, . . . , an−1) = cos2
(γ − κ

2

)
cos2

(
ωn − π

2
an − t

)
+ sin2

(γ − κ

2

)
cos2

(
ωn − π

2
an + t

)
.

It is not necessary to addπ to t whenu > 0 since we square the cosinus.

¥

Remark.P(an|a1, . . . , an−1) is a convex combination of two distributions.

3. From general von Neumann measurements to equatorial and real measurements

3.1. Correspondences between specific2× 2 unitary transformations and measurements on the
3-dimensional sphere

We remind that a measure over a qubit is a hermitian operator represented by a triple(x, y, z) ∈ R3 such that

M = xσ1 + yσ2 + zσ3 =
(

z x− ıy
x + ıy −z

)
and x2 + y2 + z2 = 1.
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and therefore using using the spherical coordinates, the pair(θ, φ) can be used for representing a measure over a qubit.
We have thatx = cos θ cos φ, y = sin θ cosφ and z = sin φ o (θ, φ) ∈ [0, 2π) × [0, π). A measure over a qubit
M = xσ1 + yσ2 + zσ3 is real if y = 0. A measure over a qubitM = xσ1 + yσ2 + zσ3 is equatorialif z = 0.

The next corollary explains the meaning, in terms of equatorial and real measurements, of the convex parts ofP i.e.
the coefficients (Bernoulli distribution) and the two distributionsP1 andP2. In fact, we give an equivalent picture in terms
of von Neumann measurements of the unitary transformations involved in the corollary (1). In fact, a player may instead
of applying a unitary transformation on his part followed by measurement in the standard basis apply a von Neumann
measurement directely getting eigenvalues±1. In fact, here−1 replaces1 in the standard basis of computation and+1
replaces0 since the eigenvectors|0〉 = |+1〉 and−|1〉 = |−1〉. In general, the spectrum (set of eigenvalues) of a measure
M = xσ1 + yσ2 + zσ3 such thatx2 + y2 + z2 = 1 is {−1, +1}. A unitary transformationU is given by

U =
(

α −ıτ β̄
ıτβ (−1)τ ᾱ

)
andα = eiϕ cosω, β = eiψ sin ω

Doing a change of basis, we have thatM = Udiag(1,−1)U†. Hence, denotingw = x + ıy,

M =
(

z w̄
w −z

)
=

(
α −β̄
β ᾱ

)(
1 0
0 −1

) (
ᾱ β̄

−β α

)

gives
z = |α|2 − |β|2 = cos 2ω and
w = 2ıτ ᾱβ = ıτei(ψ−ϕ) sin 2ω.

To represent a measureM , the spherical coordinates(θ, φ) ∈ [0, 2π)× [0, π) may be used to obtain a geometric interpre-
tation. Sincez = sin φ = cos 2ω, we haveφ = π

2 + 2ω, and sincew = eı(ψ−ϕ+τ π
2 ) sin(2ω), we haveθ = ψ − ϕ + τ π

2 .

Corollary 2. 1.A unitary matrixU represented by(ω, 0, 0, 0) corresponds to a real measurement.
2.A unitary matrixU represented by(ω, ϕ, ψ, τ) andω ∈{π/4, 3π/4, 5π/4, 7π/4} corresponds to an equatorial mea-

surement.
3.By denotingbj ∈ {−1,+1} for j ∈ {1, . . . , n} we have the following correspondence between the outputs

a1 + . . . + an ≡ 0 mod 2 ⇔ b1 · · · bn = +1
a1 + . . . + an ≡ 1 mod 2 ⇔ b1 · · · bn = −1.

3.2. A small section on the classical simulation ofP(a)

In this section, we will establish a road map for the simulation in terms of von Neumann measurements instead of unitary
transformations. Thanks to the corollary (1), if there were protocols for simulating classically with communication, in
worst-case or average case complexity, and with shared random variables both ofP1 (orP2) and the Bernoulli distribution
involved in the convex coefficients ofP, then it would be possible to simulateP. The next corollary (3) is equivalent to
the corollary (1) with the difference that it is expressed in terms of von Neumann measurements. The corollary (3) asserts
that the problem of simulatingP under applying locally von Neumann measurements can be split into two problems,
the one of simulating equatorial measurements (coefficients of the convex combination) and the one of simulating real
measurements (P1 or P2).

Corollary 3.Let PGHZ−R be a protocol simulatingP1 or P2. Moreover, letPGHZ−E be a protocol simulating the
Bernoulli distribution with parametercos2

(
(γ − κ)/2

)
. If PGHZ−E andPGHZ−R exist with worst-case or average case

complexity, then we can create a protocol, denoted byPGHZ, for simulatingP such that Cost(PGHZ) ≤ Cost(PGHZ−E)+
Cost(PGHZ−R) + n.

Proof.First, the inputs and outputs ofPGHZ are respectively the parameters describing the unitary transformations i.e.
{(ϕj , ψj , ωj , τj)}n

j=1 and an elementa ∈ {0, 1}n. The inputs and outputs ofPGHZ−E are respectively{(ϕj , ψj , τj)}n
j=1

and a bitc ∈ {0, 1} such thatProb(c = 0) = cos2
(
(γ − κ)/2

)
. The inputs and outputs ofPGHZ−R are respectively

{(ωj , τj)}n
j=1 and an elementa ∈ {0, 1}n such thatProb(a|c = 0) = P1(a).

We createPGHZ as follow :

1.PGHZ callsPGHZ−E as a subroutine with inputs{(ϕj , ψj , τj)} for j = 1, . . . , n. PGHZ−E returnsc and, if c = 0,
thenPGHZ goes to (2) otherwisePGHZ goes to (3).

c© 2012 NSP
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2.PGHZ callsPGHZ−R as a subroutine with inputs{(ωj , 0)} for j = 1, . . . , n. PGHZ returnsa = a1 · · · an.
3.PGHZ callsPGHZ−R as a subroutine with inputs{(ωj , 0)} for j = 1, . . . , n− 2 and{(ωj , 1)} for j = n− 1, n. PGHZ

returnsa = a1 · · · an−1an.

ClearlyP(a) is the probability of the value returned byPGHZ and Cost(PGHZ) ≤ Cost(PGHZ−E)+Cost(PGHZ−R)+n.
Then extra bits are necessary for simulating the equatorial part consisting of the distribution of the parity i.e.

Prob
( ∑n

j=1 aj = c
)

. Without loss of generality, the players can restrictωj = π/4 for simulating the equatorial part.

The(n − 1) first players send their bit to thenth player, and thenth player simulates on his part the bitc that he returns
to the other players for a total ofn bits.

¥

3.3. Locality of the marginal and conditional distribution ofnth bit

In this section, using the fact thatP(a1, . . . , an) = P(a1, . . . , an−1)P(an|a1, . . . , an−1), we look at the simulation of
P(a1, . . . , an). In fact, as it was shown before, all the marginal distributions are local, and, hence it does not cost anything
for simulatingP(a1, . . . , an−1). It seems therefore that the big difficulty for simulatingP(a1, . . . , an) ”belongs” thenth

person whenn ≥ 2. The conditional distributionP(an|a1, . . . , an−1) is given by

P(an|a1, . . . , an−1) = cos2
(γ − κ

2

)
cos2

(
ωn − π

2
an − t

)
+ sin2

(γ − κ

2

)
cos2

(
ωn − π

2
an + t

)
.

with

t = arctan
( v

u

)
,

u =
n−1∏

j=1

cos(ωj − π

2
aj),

v =
n−1∏

j=1

− sin(ωj − π

2
aj).

Having an idea of the discrete distribution oft over{0, 1}n−1 and how simulating it would be useful.

4. Conclusion

In this paper, we showed that the discrete probability distributionP is a convex combination of two distributions,P1

andP2. The coefficients of the combination are associated with the phases of the complex numbers defining the unitary
transformations. The distributions,P1 andP2, are related to the modules of the complex numbers defining the unitary
transformations. From the point of view commmunication complexity, the usefulness of the result is that we can split
the simulation of the distributionP of the GHZ quantum state into two simulations. Among open questions, we wonder
whether or notP1 andP2 are local? IfP1 andP2 are local, then it would follow that the entanglement of GHZ, which is
a maximally entangled state, would be contained in the coefficients multiplyingP1 andP2?
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